Use Cases
12 production-ready AI use cases with complete implementation examples
Practical examples and production-ready patterns for common AI integration scenarios
Overview
This guide showcases 12+ real-world use cases demonstrating how to build production-ready AI applications with NeurosLink AI. Each use case includes complete implementation code, cost optimization strategies, and best practices.
1. Customer Support Automation
Scenario: Automated customer support with multi-provider failover and cost optimization.
Architecture
User Query → Intent Classification → Route to:
- FAQ Bot (Free Tier: Google AI)
- Complex Support (GPT-4o)
- Escalation (Human Agent)Implementation
import { NeurosLink AI } from "@raisahai/neurolink";
class CustomerSupportBot {
private ai: NeurosLink AI;
constructor() {
this.ai = new NeurosLink AI({
providers: [
{
name: "google-ai-free",
priority: 1,
config: {
apiKey: process.env.GOOGLE_AI_KEY,
model: "gemini-2.0-flash",
},
quotas: { daily: 1500 },
},
{
name: "openai",
priority: 2,
config: {
apiKey: process.env.OPENAI_API_KEY,
model: "gpt-4o-mini",
},
},
],
failoverConfig: { enabled: true, fallbackOnQuota: true },
});
}
async classifyIntent(query: string): Promise<"faq" | "complex" | "escalate"> {
const result = await this.ai.generate({
input: {
text: `Classify customer support intent:
Query: "${query}"
Return only one word: faq, complex, or escalate`,
},
provider: "google-ai-free",
});
const intent = result.content.toLowerCase().trim();
return ["faq", "complex", "escalate"].includes(intent)
? (intent as any)
: "complex";
}
async handleFAQ(query: string): Promise<string> {
const result = await this.ai.generate({
input: {
text: `Answer this FAQ question concisely:
${query}
Use our knowledge base:
- Returns: 30-day return policy
- Shipping: 3-5 business days
- Payment: Credit card, PayPal accepted`,
},
provider: "google-ai-free",
model: "gemini-2.0-flash",
});
return result.content;
}
async handleComplexQuery(
query: string,
conversationHistory: string[],
): Promise<string> {
const result = await this.ai.generate({
input: {
text: `You are a helpful customer support agent.
Conversation history:
${conversationHistory.join("\n")}
Customer: ${query}
Provide a detailed, helpful response.`,
},
provider: "openai",
model: "gpt-4o",
});
return result.content;
}
async processQuery(
query: string,
conversationHistory: string[] = [],
): Promise<{
response: string;
intent: string;
escalated: boolean;
}> {
const intent = await this.classifyIntent(query);
if (intent === "escalate") {
return {
response:
"I've escalated your request to a human agent. They'll be with you shortly.",
intent,
escalated: true,
};
}
const response =
intent === "faq"
? await this.handleFAQ(query)
: await this.handleComplexQuery(query, conversationHistory);
return { response, intent, escalated: false };
}
}
const supportBot = new CustomerSupportBot();
const result = await supportBot.processQuery("What is your return policy?");Cost Analysis:
FAQ queries (80%): Free tier (Google AI)
Complex queries (18%): $0.15 per 1M input tokens (GPT-4o-mini)
Escalations (2%): Human agent
Total savings: 90% vs. using GPT-4o for all queries
2. Content Generation Pipeline
Scenario: Multi-stage content generation with drafting, editing, and SEO optimization.
Implementation
3. Code Review Automation
Scenario: Automated code review with security, performance, and style checks.
Implementation
4. Document Analysis & Summarization
Scenario: Extract insights from large documents (PDFs, contracts, reports).
Implementation
5. Multi-Language Translation Service
Scenario: High-quality translation with context awareness and cost optimization.
Implementation
6. Data Extraction from Unstructured Text
Scenario: Extract structured data from emails, invoices, resumes, etc.
Implementation
7. Chatbot with Memory & Context
Scenario: Conversational AI with conversation history and context management.
Implementation
8. RAG (Retrieval-Augmented Generation)
Scenario: AI with access to custom knowledge base.
Implementation
9. Email Automation & Analysis
Scenario: Automated email responses and analysis.
Implementation
10. Report Generation
Scenario: Automated business report generation from data.
Implementation
11. Image Analysis & Description
Scenario: Analyze images with vision models.
Implementation
12. SQL Query Generation
Scenario: Natural language to SQL query generation.
Implementation
Cost Optimization Patterns
Pattern 1: Free Tier First
Savings: 80-90% cost reduction
Pattern 2: Model Selection by Complexity
Savings: 60-70% cost reduction
Related Documentation
Provider Setup - Configure AI providers
Enterprise Features - Production patterns
MCP Integration - Tool integration
Framework Integration - Framework-specific guides
Summary
You've learned 12 production-ready use cases:
✅ Customer support automation ✅ Content generation pipelines ✅ Code review automation ✅ Document analysis ✅ Multi-language translation ✅ Data extraction ✅ Conversational chatbots ✅ RAG systems ✅ Email automation ✅ Report generation ✅ Image analysis ✅ SQL query generation
Each pattern includes complete implementation code, cost optimization strategies, and best practices for production deployment.
Last updated
Was this helpful?

