user-gearUse Cases

12 production-ready AI use cases with complete implementation examples

Practical examples and production-ready patterns for common AI integration scenarios


Overview

This guide showcases 12+ real-world use cases demonstrating how to build production-ready AI applications with NeurosLink AI. Each use case includes complete implementation code, cost optimization strategies, and best practices.


1. Customer Support Automation

Scenario: Automated customer support with multi-provider failover and cost optimization.

Architecture

User Query → Intent Classification → Route to:
  - FAQ Bot (Free Tier: Google AI)
  - Complex Support (GPT-4o)
  - Escalation (Human Agent)

Implementation

import { NeurosLink AI } from "@raisahai/neurolink";

class CustomerSupportBot {
  private ai: NeurosLink AI;

  constructor() {
    this.ai = new NeurosLink AI({
      providers: [
        {
          name: "google-ai-free",
          priority: 1,
          config: {
            apiKey: process.env.GOOGLE_AI_KEY,
            model: "gemini-2.0-flash",
          },
          quotas: { daily: 1500 },
        },
        {
          name: "openai",
          priority: 2,
          config: {
            apiKey: process.env.OPENAI_API_KEY,
            model: "gpt-4o-mini",
          },
        },
      ],
      failoverConfig: { enabled: true, fallbackOnQuota: true },
    });
  }

  async classifyIntent(query: string): Promise<"faq" | "complex" | "escalate"> {
    const result = await this.ai.generate({
      input: {
        text: `Classify customer support intent:
Query: "${query}"

Return only one word: faq, complex, or escalate`,
      },
      provider: "google-ai-free",
    });

    const intent = result.content.toLowerCase().trim();
    return ["faq", "complex", "escalate"].includes(intent)
      ? (intent as any)
      : "complex";
  }

  async handleFAQ(query: string): Promise<string> {
    const result = await this.ai.generate({
      input: {
        text: `Answer this FAQ question concisely:
${query}

Use our knowledge base:
- Returns: 30-day return policy
- Shipping: 3-5 business days
- Payment: Credit card, PayPal accepted`,
      },
      provider: "google-ai-free",
      model: "gemini-2.0-flash",
    });

    return result.content;
  }

  async handleComplexQuery(
    query: string,
    conversationHistory: string[],
  ): Promise<string> {
    const result = await this.ai.generate({
      input: {
        text: `You are a helpful customer support agent.

Conversation history:
${conversationHistory.join("\n")}

Customer: ${query}

Provide a detailed, helpful response.`,
      },
      provider: "openai",
      model: "gpt-4o",
    });

    return result.content;
  }

  async processQuery(
    query: string,
    conversationHistory: string[] = [],
  ): Promise<{
    response: string;
    intent: string;
    escalated: boolean;
  }> {
    const intent = await this.classifyIntent(query);

    if (intent === "escalate") {
      return {
        response:
          "I've escalated your request to a human agent. They'll be with you shortly.",
        intent,
        escalated: true,
      };
    }

    const response =
      intent === "faq"
        ? await this.handleFAQ(query)
        : await this.handleComplexQuery(query, conversationHistory);

    return { response, intent, escalated: false };
  }
}

const supportBot = new CustomerSupportBot();

const result = await supportBot.processQuery("What is your return policy?");

Cost Analysis:

  • FAQ queries (80%): Free tier (Google AI)

  • Complex queries (18%): $0.15 per 1M input tokens (GPT-4o-mini)

  • Escalations (2%): Human agent

  • Total savings: 90% vs. using GPT-4o for all queries


2. Content Generation Pipeline

Scenario: Multi-stage content generation with drafting, editing, and SEO optimization.

Implementation


3. Code Review Automation

Scenario: Automated code review with security, performance, and style checks.

Implementation


4. Document Analysis & Summarization

Scenario: Extract insights from large documents (PDFs, contracts, reports).

Implementation


5. Multi-Language Translation Service

Scenario: High-quality translation with context awareness and cost optimization.

Implementation


6. Data Extraction from Unstructured Text

Scenario: Extract structured data from emails, invoices, resumes, etc.

Implementation


7. Chatbot with Memory & Context

Scenario: Conversational AI with conversation history and context management.

Implementation


8. RAG (Retrieval-Augmented Generation)

Scenario: AI with access to custom knowledge base.

Implementation


9. Email Automation & Analysis

Scenario: Automated email responses and analysis.

Implementation


10. Report Generation

Scenario: Automated business report generation from data.

Implementation


11. Image Analysis & Description

Scenario: Analyze images with vision models.

Implementation


12. SQL Query Generation

Scenario: Natural language to SQL query generation.

Implementation


Cost Optimization Patterns

Pattern 1: Free Tier First

Savings: 80-90% cost reduction

Pattern 2: Model Selection by Complexity

Savings: 60-70% cost reduction



Summary

You've learned 12 production-ready use cases:

✅ Customer support automation ✅ Content generation pipelines ✅ Code review automation ✅ Document analysis ✅ Multi-language translation ✅ Data extraction ✅ Conversational chatbots ✅ RAG systems ✅ Email automation ✅ Report generation ✅ Image analysis ✅ SQL query generation

Each pattern includes complete implementation code, cost optimization strategies, and best practices for production deployment.

Last updated

Was this helpful?